Trang thông tin tổng hợp
Trang thông tin tổng hợp
  • người nổi tiếng
  • Thơ Văn Học
  • chính tả
  • Hình ảnh đẹp
người nổi tiếng Thơ Văn Học chính tả Hình ảnh đẹp
  1. Trang chủ
  2. Thơ Văn Học
Mục Lục

Bài tập tổng hợp về hàm số bậc hai (chọn lọc, có lời giải)

avatar
kenvin
15:35 19/11/2025

Mục Lục

Bài viết Bài tập tổng hợp về hàm số bậc hai với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập tổng hợp về hàm số bậc hai.

Bài tập tổng hợp về hàm số bậc hai (chọn lọc, có lời giải)

(199k) Xem Khóa học Toán 10 KNTTXem Khóa học Toán 10 CDXem Khóa học Toán 10 CTST

Bài 1: Xác định phương trình của Parabol (P): y = x2 + bx + c (P) trong các trường hợp sau:

a) (P) đi qua điểm A(1;0) và B (-2; -6)

b) (P) có đỉnh I(1; 4)

c) (P) cắt trục tung tại điểm có tung độ bằng 3 và có đỉnh S(-2; -1).

Bài 2: Lập bảng biến thiên và vẽ đồ thị các hàm số sau

a) y = x2 - 3x + 2

b) y = -2x2 + 4x

Bài 3: Cho hàm số y = -x2 - 2x + 2

a) Lập bảng biến thiên và vẽ đồ thị các hàm số trên

b) Tìm m để đồ thị hàm số trên cắt đường thẳng y = m tại hai điểm phân biệt

c) Sử dụng đồ thị, hãy nêu các khoảng trên đó hàm số chỉ nhận giá trị âm

d) Sử dụng đồ thị, hãy tìm giá trị lớn nhất, nhỏ nhất của hàm số đã cho trên [-3; 1]

Bài 4: Vẽ đồ thị của hàm số sau:

a) y = -x2 - 2|x| + 3

b)

Bài 5: Tìm giá trị lớn nhất và nhỏ nhất của hàm số y = x4 - 4x2 - 1 trên [-1; 2]

Bài 6: Cho các số x, y thoả mãn: x2 + y2 = 1 + xy. Chứng minh rằng

1/9 ≤ x4 + y4 - x2y2 ≤ 3/2

Đáp án và hướng dẫn giải

Bài 1:

a) Vì (P) đi qua A, B nên

Vậy (P): y = x2 + 3x - 4 .

b) Vì (P) có đỉnh I(1; 4) nên:

Vậy (P): y = x2 - 2x + 5.

c) (P) cắt Oy tại điểm có tung độ bằng 3 suy ra c = 3

(P) có đỉnh S (-2; -1) suy ra:

Vậy (P): y = x2 + 4x + 3.

Bài 2.

a) Ta có:

Bảng biến thiên

Suy ra đồ thị hàm số y = x2 - 3x + 2 có đỉnh là I(3/2; -1/4), đi qua các điểm A(2; 0); B (1; 0), C(0; 2).

Đồ thị hàm số nhận đường thẳng x = 3/2 làm trục đối xứng và hướng bề lõm lên trên.

b) Ta có

Bảng biến thiên

Suy ra đồ thị hàm số y = -2x2 + 4x có đỉnh là I(1; 2), đi qua các điểm O(0; 0), B (2; 0).

Đồ thị hàm số nhận đường thẳng x = 1 làm trục đối xứng và hướng bề lõm xuống dưới.

Bài 3:

a) Ta có:

Bảng biến thiên

Suy ra đồ thị hàm số y = -x2 - 2x + 3 có đỉnh là I(-1; 4), đi qua các điểm A(1; 0), B (-3; 0).

Đồ thị hàm số nhận đường thẳng x = -1 làm trục đối xứng và hướng bề lõm xuống dưới.

b) Đường thẳng y = m song song hoặc trùng với trục hoành do đó dựa vào đồ thị ta có

Với m < 4 đường thẳng y = m và parabol y = -x2 - 2x + 3 cắt nhau tại hai điểm phân biệt.

c) Hàm số nhận giá trị dương ứng với phần đồ thị nằm hoàn toàn trên trục hoành

Do đó hàm số chỉ nhận giá trị âm khi và chỉ khi x ∈ (-∞; -2) ∪ (1; +∞).

d) Dựa vào bảng biến thiên, ta có:

Bài 4: a) y = -x2 - 2|x| + 3

a) Vẽ đồ thị hàm số (P): y = -x2 - 2x + 3 có đỉnh I (-1; - 4), trục đối xứng x = -1, đi qua các điểm A(1; 0), B (-3; 0). Bề lõm hướng xuống dưới.

Khi đó (P1 ) là đồ thị hàm số y = -x2 - 2|x| + 3 là gồm phần bên phải trục tung của (P) và phần lấy đối xứng của nó qua trục tung.

b) Gọi (P2 ) là phần đồ thị của (P) nằm trên trục hoành và lấy đối xứng của phần nằm dưới trục hoành qua trục Ox.

Vậy đồ thị hàm số

gồm phần bên đồ thị bên phải đường thẳng x = 1 của (P2 ) và phần đồ thị bên trái đường thẳng x = 1 của (P1 ).

Bài 5:

Đặt t = x2. Với x ∈ [-1; 2] ta có t ∈ [0; 4]

Hàm số trở thành f(t) = t2 - 4t - 1 với t ∈ [0; 4].

Bảng biến thiên

Suy ra :

Bài 6:

Đặt P = x4 + y4 - x2y2

Ta có P = (x2 + y2)2 - 3x2y2 = (1+xy)2 - 3x2y2 = -2x2y2 + 2xy + 1

Đặt t = xy, khi đó P = -2t2 + 2t + 1

Xét hàm số f(t) = -2t2 + 2t + 1 trên [(-1)/3; 1]

Ta có bảng biến thiên

Từ bảng biến thiên ta có :

Suy ra điều phải chứng minh.

Để học tốt lớp 10 các môn học sách mới:

  • Giải bài tập Lớp 10 Kết nối tri thức
  • Giải bài tập Lớp 10 Chân trời sáng tạo
  • Giải bài tập Lớp 10 Cánh diều
0 Thích
Chia sẻ
  • Chia sẻ Facebook
  • Chia sẻ Twitter
  • Chia sẻ Zalo
  • Chia sẻ Pinterest
In
  • Điều khoản sử dụng
  • Chính sách bảo mật
  • Cookies
  • RSS
  • Điều khoản sử dụng
  • Chính sách bảo mật
  • Cookies
  • RSS

MCBS

MCBS cung cấp kiến thức dinh dưỡng, bài tập tăng chiều cao, phát triển trí tuệ cho trẻ. Giải pháp khoa học giúp trẻ cao lớn khỏe mạnh.

© 2026 - CLTM

Kết nối với CLTM

Trang thông tin tổng hợp
  • Trang chủ
  • người nổi tiếng
  • Thơ Văn Học
  • chính tả
  • Hình ảnh đẹp
Đăng ký / Đăng nhập
Quên mật khẩu?
Chưa có tài khoản? Đăng ký