Trang thông tin tổng hợp
Trang thông tin tổng hợp
  • người nổi tiếng
  • Thơ Văn Học
  • chính tả
  • Hình ảnh đẹp
người nổi tiếng Thơ Văn Học chính tả Hình ảnh đẹp
  1. Trang chủ
  2. Thơ Văn Học
Mục Lục

Viết phương trình tiếp tuyến của đồ thị hàm số

avatar
kenvin
19:43 14/11/2025

Mục Lục

I.Lý thuyết: Bài toán về tiếp tuyến với đường cong:

Cách 1: Dùng tọa độ tiếp điểm

Phương trình tiếp tuyến có dạng: y = f’(x0). (x - x0) + y0

1.Lập phương trình tiếp tuyến với đường cong tại điểm M(x0, y0) thuộc đồ thị hàm số (tức là tiếp tuyến duy nhất nhận M(x0; y0) làm tiếp điểm).

Phương trình tiếp tuyến với hàm số (C): y = f(x) tại điểm M(x0; y0) ∈ (C)

(hoặc tại h x = x0 ) có dạng: y =f’(x0).(x - x0) + y0.

2.Lập phương trình tiếp tuyến d với đường cong đi qua điểm A (xA, yA) cho trước, kể cả điểm thuộc đồ thị hàm số (tức là mọi tiếp tuyến đi qua A(xA, yA)).

Cho hàm số (C): y = f(x). Giả sử tiếp điểm là M(x0, y0), khi đó phương trình tiếp tuyến có dạng: y = f’(x).(x - x0) + y0 (d).

Điểm A(xA, yA) ∈ d, ta được: yA = f’(x0). (xA - x0) + y0 => x0

Từ đó lập được phương trình tiếp tuyến d.

3. Lập phương tiếp tuyến d với đường cong biết hệ số góc k

Cho hàm số (C): y = f(x). Giả sử tiếp điểm là M(x0;y0), khi đó phương trình tiếp tuyến có dạng: d: y = f’(x0).(x - x0) + y0.

Hoành độ tiếp điểm của tiếp tuyến d là nghiệm của phương trình:

f’(x0) = k => x0, thay vào hàm số ta được y0 = f(x0).

Ta lập được phương trình tiếp tuyến d: y = f’(x0). (x - x0) + y0.

Cách 2: Dùng điều kiện tiếp xúc

Phương trình đường thẳng đi qua một điểm M(x0; y0) có hệ số góc k có dạng;

d:y = g’(x) = k.(x - x0) + y0.

Điều kiện để đường thằng y = g(x) tiếp xúc với đồ thị hàm số y = f(x) là hệ phương trình sau có nghiệm: (left{begin{matrix} f(x)=g(x) & f'(x)=g'(x) & end{matrix}right.) Từ đó lập được phương trình tiếp tuyến d.

II. Bài tập

Loại 1: Cho hàm số y =f(x). Viết phương trình tiếp tuyến tại điểm M0(x0; y0) ∈ (C).

Giải

Phương trình tiếp tuyến tại M0 có dạng: y = k(x - x0) + y0 (*)

Với x0 là hoành độ tiếp điểm;

Với y0 = f(x0) là tung độ tiếp điểm;

Với k = y’(x0) = f’(x0) là hệ số góc của tiếp tuyến.

Để viết được phương trình tiếp tuyến ta phải xác định được x0; y0 và k.

MỘT SỐ DẠNG CƠ BẢN

Dạng 1: Viết phương trình tiếp tuyến tại M0(x0;y0) ∈ (C)

-Tính đạo hàm của hàm số, thay x0 ta được hệ số góc

Áp dụng (*) ta được phương trình tiếp tuyến cần tìm.

Dạng 2: Cho trước hoành độ tiếp điểm x0

-Tính đạo hàm của hàm số, thay x0 ta được hệ số góc.

- Thay x0 vào hàm số ta tìm được tung độ tiếp điểm.

Áp dụng (*) ta được phương trình tiếp tuyến cần tìm.

Dạng 3: Cho trước tung độ tiếp điểm y0

-Giải phương trình y0 = f(x0) để tìm x0.

-Tính đạo hàm của hàm số, thay x0 ta được hệ số góc.

Áp dụng (*) ta được phương trình tiếp tuyến cần tìm.

Chú ý: Có bao nhiêu giá trị của x0 thì có bấy nhiêu tiếp tuyến.

Dạng 4: Cho trước hệ số góc của tiếp tuyến k = y’(x0) = f’(x0)

-Tính đạo hàm và giải phương trình k = y’(x0) = f’(x0) để tìm x0

- Thay x0 vào hàm số ta tìm được tung độ tiếp điểm cần tìm.

Chú ý: Có bao nhiêu giá trị của x0 thì có bấy nhiêu tiếp tuyến.

Chú ý: Một số dạng khác

-Khi giả thiết yêu cầu viết phương trình tiếp tuyến biết tiếp tuyến vuông góc với đường thẳng : y = ax + b thì điều này

<=> y’(x0). a = -1 ⇔ y’(x0) = -1/a

... Quay về dạng 4.

- Khi giả thiết yêu cầu viết phương trình tiếp tuyến biết tiếp tuyến song song với đường thẳng

y = ax + b thì điều này ⇔ y’(x0) = a… Quay về dạng 4.

- Khi giả thiết yêu cầu viết phương trình tiếp tuyến tại giao điểm với đường thẳng y = ax + b thì việc đầu tiên là tìm tọa độ giao điểm của (C) và đường thẳng… Quay về dạng 1.

Chú ý:

Cho hai đường thẳng d1: y = a1x + b1 với a1 là hệ số góc của đường thẳng d1 và y = a2x + b2 với a2 là hệ số góc của đường thẳng d2.

0 Thích
Chia sẻ
  • Chia sẻ Facebook
  • Chia sẻ Twitter
  • Chia sẻ Zalo
  • Chia sẻ Pinterest
In
  • Điều khoản sử dụng
  • Chính sách bảo mật
  • Cookies
  • RSS
  • Điều khoản sử dụng
  • Chính sách bảo mật
  • Cookies
  • RSS

MCBS

MCBS cung cấp kiến thức dinh dưỡng, bài tập tăng chiều cao, phát triển trí tuệ cho trẻ. Giải pháp khoa học giúp trẻ cao lớn khỏe mạnh.

© 2025 - CLTM

Kết nối với CLTM

Trang thông tin tổng hợp
  • Trang chủ
  • người nổi tiếng
  • Thơ Văn Học
  • chính tả
  • Hình ảnh đẹp
Đăng ký / Đăng nhập
Quên mật khẩu?
Chưa có tài khoản? Đăng ký